REGULARIZATION OF THE SCHEME FOR SOLVING
REVERSE HEAT-CONDUCTION PROBLEMS

O. M. Alifanov UDC 536.24.02

A procedure is developed for determining the thermal fluxes from the stable solution to a
reverse heat-conduction problem, and the computational efficiency of this scheme is evalu~

ated.

In [1] the author has constructed algorithms for a stable determination of transient thermal fluxes from
temperature measurements at one point of a semiinfinite body or a flat plate with a constant thermal dif-
fusivity. Let us evaluate the efficiency of the proposed regularization in solving a reverse heat-conduction
problem, using as an example a semiinfinite body with a stationary boundary and a zero initial temperature
field. For this case, according to [2], we write the recurrence relation for the thermal flux:
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We stipulate the following norms:
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and consider the A. N. Tikhonov regularizing functional for (1)
%< [g, 8] = ||Aag — 61 +lig’[%, &> 0. @
Minimizing (2) with respect to c—l, with the initial and the boundary condition
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we obtain a system of linear algebraic equations with a symmetrical positive~definite matrix
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Fig. 1. Determination of thermal fluxes c—i (°C) at xy
= 0.6 mm with A¥o = 0.06: by the direct method with
0y~ 0.0010 4, (3), exact solution (solid line).
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System (3) with a given value of parameter a is best solved by the square-root method. The choice
of the closest approximation to q (the choice of o) will be made by the Tikhonov—Glasko method of the quasi-
optimum parameter [3] (ajﬂ = naj, % >0

m;n{Al_-:mTaX]an_l ““Ioc]-]], A =00} 4)
the remainder principle
m n 172
min {a,=[ E_I[ZI O Gy —Og,[2AF0 | —81)} La=a, 5)
and the value of the regularizing functional in the regularized solution
min { @ [g,] = 8,), @ = oneg. (6)

The last two methods were proposed and explained by V. A. Morozov [4, 5].

In accordance with the developed algorithms, a program has been set up in the ALGOL-60 language
and various methodical examples were calculated on an M-220 computer. Some results are shown here.

This already known formula
¢ (Fo) = 48 + 88Fo -+ 27Fo?
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Fig. 2. Thermal fluxes c] (°C): at (a) x{ = 0.6 mm with AFo = 0.06
and 6y = 0.050p5%x(18°C) (1}, 0.25@1%(88°C) (2), 0.250p,54(88°C)
and C; = 0 (3); (b) with a normal distribution of errors in the orig-
inal temperature readings, at x; = 2.4+-10~° m with A Fo = 0.004 and
0g = 0.05@max (1), 0.158y,, (2). Solid lines represent the exact
solution, dashed lines represent the accuracy of restoring the ther-
mal flux curve at known values of C; and C;. Parameters € and 6
both in %.

was being restored on the basis of temperature values at a given point inside a body with a sufficiently low
conductivity (A = 1.3-10~* kW/m*°C) and thermal diffusivity (@ = 1.2° 1077 m®/sec). The input function
®(x;) was determined from the solution to the forward heat-conduction problem, on the basis of a given
thermal flux. The values of ®,(xy) which had been computed with an error smaller than 1072-10"%K were
tentatively accepted as exact data for solving the reverse heat-conduction problem.

In Fig. 1 is shown an example of a c_l(Fo) curve computed with exact data for a = 0, x; = 0.6+ 10~% m,
and AFo = 0.06. Beginning at Fo ~ 2, evidently, the values for g differ appreciably from the sought ones.
If small errors due to a rounding of the input values to integers (6 ~ 0.001@y4x) aTe introduced into 8,
however, then the direct method will become entirely unfeasible at sufficiently small values of A Fo.
Meanwhile, the regularized solution is very close to the exact solution.

In order to evaluate the accuracy of the solution to the reverse heat-conduction problem, as a func-
tion of the error in the initial values, the ®, values were "perturbed" as follows:

1. @5, = @y + (—1)19 is the saw-tooth perturbation;

2. @gp = Oy + (6¢/3)wy, is the perturbation according to a normal distribution of probability densities,
on the basis of the "three sigma" rule;

3. ®gy = O, + Ofy, is the perturbation according to a uniform distribution of probability densities;
4. @5y = Op * 6 is the constant systematic error.

Here 6, denoted the largest possible error, wp was a random quantity distributed normally with the mathe~
matical expectation m = 0 and the dispersion D = 1, {,, was a random quantity distributed equidensely on the
interval [—1, 1].

The first three perturbation modes have yielded results of comparable accuracy. The inaccuracy
of q, (T) was somewhat greater with the uniform distribution of @, errors. The results of regularized
approximations at x; = 0,6- 10~°m for this case are shown in Fig. 2a. With the temperature probe moved
away from the body surface to a distance x; = 2.4+ 107%m, where ®max = 20°K and @ ~0 during the initial
period (Fo = 0—1), the accuracy of restoring the q(7) curve becomes somewhat worse (Fig. 2b), but even
pow must still be considered close. With the fourth kind of perturbation, the error in determining the
thermal flux was approximately equal to the error in the initial temperature values.

Conditions 51’(0) = Cy and c_l'(Tm) = Cy are in many practical cases unknown and must be replaced by
so called natural boundary conditions (C; = Cy = 0). As a result, around the end points 7= 0and 7= Ty,
the regularized approximation deviates from the sought function (Fig, 2a, 3). This deviation becomes
larger, as the fluctuating errors in the input data increase. If it is important to reduce the range affected
by a priori defined initial and boundary conditions, therefore, one may begin by first smoothing cut the
input data. Such an approach is justified also in the case where the standard deviation of temperature
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readings has not been estimated and the choice of @ can be based only on the closest proximity of regularized
solutions (4), a condition which is very decisive at small values of 6. For smoothing out the input data, one
needs algorithms based on the general method of regularization [6].

It would be of interest to evaluate the effectiveness of zeroth-order regularization in solving a reverse
heat-conduction problem with the regularizing functional

@ [q, 8] = [|Ag— ||z, +a| qliZ,
where ll—ll1,, denotes a norm in the Hilbert space L, of functionals. In this case there is no uniform con-
vergence of regularized solutions. Indeed, it follows from the appropriate Euler equation [1]
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that the regularized solutions will become tied at the end to a zero value. Such a method of regularizing
the solutions to reverse heat-conduction problems yields satisfactory results, if the boundary function fo
be restored is close to zero at T = Ty, (Fig. 3).

As many computer-simulated experiments have shown, a sufficiently accurate and reliable restora-
tion of boundary conditions requires the combining of the quasioptimum parameter method (4) with the
remainder principle (5) or with condition (6). Moreover, inasmuch as the remainder principle always yields
"oversmoothed" results, a much better approximation would be the regularized solution which corresponds
to the first local minimum A, to the left of @j(a < @j). We note that, with small errors in the initial tem-
perature values, the choice of closer approximations to the sought boundary function on the basis of con-
dition (4), (5), or (6) leads to almost identical results. For finding the sought approximation, therefore,
one may use the quasioptimum parameter method alone and in this method ohe does not need to know the
error in the input data.

In some problems it is worthwhile fo improve the accuracy of approximating operator A with A ;.
This is the case, for example, in problems where the dynamic characteristics of external heat loads change
appreciably, also in problems where very accurate results are required from input data given with suf-
ficiently small errors.

A very accurate approximation to the operator which establishes the correspondence between g and ©
becomes the overriding requirement for an effective use of the remainder principle in the second kind of
problem, inasmuch as it is implied in this principle that the error of the operator approximation is negli-
gibly smaller than the error in the input data. On this basis, then, we will construct a regularization
scheme for solving a reverse heat-conduction problem with the computation analog of the integral equation
derived for a piecewise-linear approximation to the sought thermal flux q(7) curve [2]:

0.0 = 22N (K, g )

i=l

Following the just described procedure for obtaining a regularization algorithm, and omitting all inter-
mediate steps, we write down the final result in the form of the system of algebraic equations (boundary
conditions for the Euler equation q'(0) = q'(Tm) = 0):

: o
(ao,o + j%) Qo+ (bo,l - —Zr_z) Gy + Yo,y -+

m
+ bO,m-lqm-l + Co,mm = 21 @104,
n=
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Starting the regularization process with relation (7) makes it possible to improve the approximation
to the operator A. As a consequence, for obtaining the same accuracy in restoring the thermal flux curve,
one may make the AT interval wider than in the algorithm based on Eq. (3) and thus reduce the necessary

computer time or increase the widest possible [0, 7,1 interval on which a boundary condition is to be re-
stored.
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Fig. 3. Zeroth-order regularization for a
"triangular” thermal flux Ei (°C) with a uni-
form distribution of errors in the initial
temperature values, with AFo = 0.02 and
6= 0.010p 5% (1), 0.10y,,¢ (2). Solid
line represents the exact solution, dashed
line represents the estimated accuracy

of restoring the thermal flux curve. Para-
meters € and 6 both in %.

g

The last statement is relevant to the "dimensionality problem" concerning the limited memory of
modern computers and their inability to solve high-dimensional problems. The dimensionality of a problem
1is determined by the highest order of the system of algebraic equations (3) or (7), equal to the largest pos-
sible number of subdivisions of the time interval (mp, 5 = 70 for solving Eq. (3) on an M-20 computer).

In practice one often encounters the problem of determining the thermal flux to a plate with one sur-
face insulated where the temperature is measured. For this case there has been derived an integral equa-
tion (with a kernel not containing infinite series) in [7] for determining an auxiliary function g(r) coupled to
q(T) through a continuous operator. The first part of this equation represents the derivative of the test
temperature with respect to time d®/d7, the determination of which is a problem in the noncorrective class.
For this reason, it is worthwhile to construct the computation algorithm so as to bypass the intermediate
step of calculating the derivative.

We use the integral equation in g(7) [8], representing it in the form

T

d . . do (7)
fg(g) S ea—pa -0

0

where
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Changing the order of integration yields
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Using the approximation technique shown in [2], we write
‘ n
2§iﬁg=@m n=1,2, ..., m,
i=1
where
b? b
2a [F(y?) (V2] SV at—)

FY) = —}lf—[i(D*(Y)—O.S 9_*;&*] .

240



Thus, determining the auxiliary function g(7) falls within the framework of the described regularization
procedure according to (3). The relating equation q(g(7), 7) is

b2
T I—exp {——
I . a(t—§) }
1= (g —— L
1]

After an approximation we obtain the following computation formula:

_‘(p?, n:l, 2, R ()

gn =

where

g =8 ep??={Vrn——§~—Vn(rn——§> io*

2
b =T;
[Va('f — 5 J} ~1;
Solving several model problems of determining the thermal fluxes has shown that the procedure is

computationally as efficient as the procedure for a semiinfinite body, except for the somewhat wider "edge
effect" region subject to the arbitrary choice of condition g'(Ty,) = 0.

The proposed methed of determining the boundary conditions is suitable for a large class of problems
involving the simulation of transient thermal modes in the laboratory and in field testing of diverse appara-
tus.

NOTATION
A is the integral operator;
AAT is the approximating operator;
a is the thermal diffusivity;
b is the plate thickness;
g is the auxiliary function;
q is the thermal flux;
T is the temperature;
X4 is the distance from body surface to temperature probe;
Fo is the Fourier number;
o is the regularization parameter;
0L, is the error of input data in the metrics of the Hilbert space of functionals;

is the largest error in restoring the thermal flux curve, with respect to gyaxi
AT is the time interval;

® is the model temperature;

A is the thermal conductivity;

T is the time;

Tm is the right-hand boundary of time interval;

AFo =aAT/xi.
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