
R E G U L A R I Z A T I O N  O F  T H E  S C H E M E  F O R  S O L V I N G  

R E V E R S E  H E A T - C O N D U C T I O N  P R O B L E M S  

O. M. A l i f a a o v  UDC 536.24.02 

A p rocedu re  is  developed fo r  de termining  the t h e r m a l  f luxes f r o m  the stable solution to a 
r e v e r s e  heat-conduct ion p rob l em,  and the computat ional  e f f ic iency  of this scheme is  eva lu -  
ated. 

In [1] the author  has  cons t ruc ted  a lgo r i thms  for  a s table de te rmina t ion  of t r ans ien t  t he rma l  f luxes f r o m  
t e m p e r a t u r e  m e a s u r e m e n t s  at  one point of a semiinf ini te  body or  a f lat  plate  with a constant  t h e r m a i  di f -  
fusivity.  Let  us evaluate  the ef f ic iency of the p roposed  regu la r iza t ion  in solving a r e v e r s e  heat-conduct ion 
p rob l em,  us ing as  an example  a semiinfini te  body with a s t a t ionary  boundary and a zero  init ial  t e m p e r a t u r e  
field. Fo r  this case ,  accord ing  to [2], we wri te  the r e c u r r e n c e  re la t ion  for  the t h e r m a l  flux: 

n--1 

T n ( x l )  ~=1 
t~ 

where | i) = (l/X0) ~ X(T)dT r e p r e s e n t s  the model  t e m p e r a t u r e  at  the n- th  ins tant  of t ime at  point x = x i , 
J 

1 
~ =  2 t /  A-F-~{]f l~ i + l i@* [ 2]/-AFo (n~i  + l) ] 

2VAFo (n - -  i) ' 

1 - - u (  2 " 
]/=~-; exp [--~'] d~l ) iq)* [u] = - ~ -  exp [--u 21 1 

0 

We stipulate the following no rm s :  

= [ Z o.,]'" Js 'Jl = [Z  

jIA, !j = [Z  
n , i  

and cons ider  the A. N. Tikhonov regu la r i z ing  functional for  (1) 

(D ~ at [q, O] IIAa~q - @lJ ~ + ~Jl~[J~, ~ > O. 

M i n i m i z i n g  (2) with r e s p e c t  to q, with the ini t ial  and the boundary condition 

qm+, - -  q,, _ C2 ' 

we obtain a s y s t e m  of l inear  a lgebra ic  equations with a s y m m e t r i c a l  pos i t ive-def in i te  ma t r i x  

rn 

~ a , k ~ = f h ,  k--=l, 2 . . . . .  m, 
l ~ 1  

(2) 
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Fig. 1. De te rmina t ion  of t h e r m a l  f luxes  q (~ a t  x 1 
= 0.6 m m  with A F o  = 0.06: by the d i rec t  method with 
60 ~ 0.001|  x (3), exact  solution (solid line). 

where  

m 

am = hFo ~ ~ n n +k +t , l >~ k + 2; 
n = l  

at ~ = AFo~ ~ n n +k+t - - a ,  l =  k + l; 

?/1 

r ~ t  

m 

a n = h F o ' Z ( + 7 ) '  .4-a, l =  I, m; 

m 

ft = Z bx~On -- aC1AF~ 

fh = ~ banOn, k :~  1, m; bhn 2 n = AFo +k; f m =  bmmOm -F aC~hFo. 
n ~ k  

Sys tem (3) with a given value of p a r a m e t e r  a is  bes t  solved by the s q u a r e - r o o t  method. The choice 
of the c lo se s t  approx imat ion  to q (the choice of ~) will be made by the Tikhonov--Glasko method of the quas i -  
op t imum p a r a m e t e r  [3] (aj+ 1 = n a j ,  ~ > 0) 

min~ { A1 = max I q-~]+, - -  q-~j ]}, o~ = aqo ; (4) 

the r e m a i n d e r  pr inc ip le  
= 

and the value of the r egu la r i z ing  functional in the r egu l a r i zed  solution 

rain {0  ~ [$~] - -  +L,}'  m = m m g .  

The l a s t  two methods were  p ropos ed  and explained by V. A. Morozov [4, 5]. 

In accordance  with the developed a lgor i thms ,  a p r o g r a m  has  been set  up in the ALGOL-60 language 
and va r ious  methodical  exam p l e s  were  ca lcu la ted  on an M-220 computer .  Some r e s u l t s  a r e  shown here .  

This a l r eady  known fo rmula  

q (Fo) = 48 -F 88Fo q- 27Fo z 

(5) 

(6) 
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a t (a )  x l =  0 . 6 m m w i t h A F o =  0.06 
and 50 = 0.05|176 (1), 0.25|176 (2), 0.25|176 
and C 1 = 0 (3); (b) with a normal  distribution of e r r o r s  in the o r ig -  
inal tempera ture  readings,  at x 1 = 2 .4 .10  .3 m with AFo  = 0.004 and 
5o = 0.05| (1), 0.15| x (2). Solid lines r ep resen t  the exact  
solution, dashed lines r epresen t  the accuracy  of r e s to r ing  the t he r -  
mal flux curve at known values of C t and C2. P a r a m e t e r s  ~ and 5 
both in %. 

was being r e s to red  on the basis  of t empera ture  values at a given point  inside a body with a sufficiently low 
conductivity (k = 1.3- 10 .4 k W / m ' ~  and thermal  diffusivity (a = 1.2" 10 .7 m2/sec). The input function 
| l) was determined f rom the solution to the forward  heat-conduction problem, on the basis  of a given 
thermal  flux. The values of | which had been computed with an e r r o r  smal le r  than 10-2-I0-3~ were 
tentatively accepted as exact  data for solving the r eve r se  heat-conduction problem. 

In Fig. 1 is shown an example of a q(Fo) curve computed with exact  data for  a = 0, x 1 = 0 .6 .10  .3 m, 
and A F| = 0.06. Beginning at F| ~ 2, evidently, the values for  q differ appreciably  f rom the sought ones. 
If smal l  e r r o r s  due to a rounding of the input values to in tegers  (50 ~ 0.001| are  introduced into | 
however,  then the direct  method will become ent i re ly  unfeasible at sufficiently smal l  values of AFo.  
Meanwhile, the regular ized  solution is ve ry  close to the exact solution. 

In o rde r  to evaluate the accuracy  of the solution to the r eve r se  heat-conduction problem,  as  a func-  
tion of the e r r o r  in the initial values,  the | values were "perturbed" as follows: 

1. | = | + (--1)n50 is the saw-tooth perturbat ion;  

2. | = | + (50/3)wn is the per turbat ion according  to a normal  distribution of probabi l i ty  densities,  
on the basis  of the "three s igma" rule;  

3. | = | + 60~n is the per turbat ion according to a uniform distribution of probabi l i ty  densit ies;  

4. | = | • 60 is the constant  sys temat ic  e r ro r .  

Here 60 denoted the l a rges t  possible e r r o r ,  ~n was a random quantity distr ibuted normal ly  with the mathe-  
matical  expectation m = 0 and the dispers ion D = 1, ~nwas a random quantity distr ibuted equidensely on the 
interval  [--1, 1]. 

The f i r s t  three per turbat ion modes have yielded resul t s  of comparable  accuracy .  The inaccuracy  
ofqo~ff)was somewhat g r ea t e r  with the uniform distribution of O n e r r o r s .  The resul ts  of regular ized  
approximations at x 1 = 0.6- 10-3m for  this case are  shown in Fig. 2a. With the tempera ture  probe moved 
away f rom the body surface to a distance x I = 2 .4 .10-3m,  where | -~ 20~K and | N0 during the initial 
per iod  (Fo = 0--1), the accu racy  of r e s to r ing  the q0") curve becomes  somewhat worse (Fig. 2b), but even 
now must  still be considered close. With the fourth kind of per turbat ion,  the e r r o r  in determining the 
thermal  flux was approximately  equal to the e r r o r  in the initial t empera ture  values. 

Conditions q'(0) = C i and q ' f fm)  = C2 are  in many prac t ica l  cases  unknown and must  be replaced by 
so called natural  boundary conditions (Ct = C2 = 0). As a result ,  around the end points �9 = 0 and T = ~m 
the regular ized  approximation deviates f rom the sought function (Fig. 2a, 3). This deviation becomes  
la rger ,  as the fluctuating e r r o r s  in the input data increase .  If i t  is  impor tant  to reduce the range affected 
by a p r io r i  defined initial and boundary conditions, therefore ,  one may begin by f i r s t  smoothing out the 
input data. Such an approach is just if ied also in the case where the s tandard deviation of tempera ture  
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readings  has not been es t imated  and the choice of a can be based only on the c loses t  p rox imi ty  of regu la r ized  
solutions (4), a condition which is  v e r y  decisive at smal l  values  of 6. For  smoothing out the input data, one 
needs a lgor i thms based on the genera l  method of regular iza t ion  [6]. 

It would be of i n t e re s t  to evaluate the ef fec t iveness  of z e r o t h - o r d e r  regular iza t ion  in solving a r e v e r s e  
heat-conduct ion p rob lem with the regular iz ing  functional 

I r qb~ [q, Ol ---- IIAq-- OI][~ -Vail ql~L,, 

where II--IIL2 denotes a no rm in the Hilbert  space L 2 of funetionals.  In this ease there  is  no uniform con-  
vergence  of r egu la r i zed  solutions. Indeed, i t  follows f ro m  the appropr ia te  Eu le r  equation [1] 

1 tl  ~( (~' ;) n (;)d;- b (~) + u (~) = 0, 
6r ~Z 

0 

where 

] i 'K(x- - -~)K(~--  ~)d~, 0 ~ < ~ - ~ ,  

; )= l 
j' K ('~ -- ~) K (~ --  ~l d'q ~ ~ ~ ~< ~c~, 

b-(U = ~ o (~) K (T, ~) d~, 

that the r egu la r i zed  solutions will become t ied at the end to a zero  value. Such a method of regular iz ing 
the solutions to r e v e r s e  heat-conduct ion p rob lems  yields sa t i s fac tory  resu l t s ,  if  the boundary function to 
be r e s t o r e d  is  close to zero  at  ~" = T m (Fig. 3). 

As many compute r - s imula ted  exper iments  have shown, a sufficiently accura te  and rel iable r e s t o r a -  
tion of boundary conditions r equ i r e s  the combining of the quasiopt imum p a r a m e t e r  method (4) with the 
r em a inde r  pr inciple  (5) o r  with condition (6). Moreover ,  inasmuch as  the r em a in d e r  pr inciple  always yields 
"oversmoothed"  resu l t s ,  a much be t t e r  approximation would be the regu la r i zed  solution which cor responds  
to the f i r s t  local  minimum A 1 to the left  of ai(ce < ai) .  We note that, with smal l  e r r o r s  in the initial  t em-  
pe ra tu re  values,  the choice of c lose r  approximat ions  to the sought boundary function on the basis  of con- 
dition (4), (5), o r  (6) leads to a lmost  identical  resul ts .  F o r  finding the sought approximation,  therefore ,  
one may use the quasiopt imum p a r a m e t e r  method alone and in this method one does not need to know the 
e r r o r  in the input data. 

In some p rob lems  it  is worthwhile to improve the accu racy  of approximating opera tor  A with AAT. 
This is the case,  for  example,  in p rob lems  where the dynamic cha rac t e r i s t i c s  of ex te rna l  heat loads change 
appreciably,  also in p rob lems  where v e r y  accura te  r e su l t s  a re  r equ i red  f ro m  input data given with suf- 
f ic ient ly  small  e r r o r s .  

A ve ry  accura te  approximat ion to the opera to r  which es tabl i shes  the cor respondence  between q and | 
becomes  the over r id ing  r equ i r emen t  fo r  an effect ive use of the r ema inde r  pr inciple  In the second triad of 
p roblem,  inasmuch as i t  is impl ied in this pr inciple  that the e r r o r  of the opera to r  approximation is  negl i -  
gibly sma l l e r  than the e r r o r  in the input data. On this  basis ,  then, we will cons t ruc t  a regular iza t ion  
scheme for  solving a r e v e r s e  heat-conduct ion p rob lem with the computation analog of the in tegral  equation 
der ived  for  a p i ecewise - l i nea r  approximation to the sought the rmal  flux qff) curve [2]: 

rt 

2Va' ,  o ~ O. (xx) = ~ ~ ( F' K ' - -  J' q'-' ) " (7) 

Following the just  desc r ibed  p rocedure  for  obtaining a regula r iza t ion  algori thm, and omitt ing all  i n t e r -  
mediate steps,  we write down the final r esu l t  in the fo rm of the sys tem of a lgebraic  equations (boundary 
conditions for  the Eu le r  equation q'(0) = q ' ( r  m) = 0): 

m 

+ bo,m-lqm-1 -]- CO,mqm = Z r 
n ~ l  
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+ t,,,q, + . . .  + h,,,,_,q,,,_: + d,,,,q~ = ele~,+ ' ~  (e? + ,~'~) e~,,,, 
i~2 

-t-f~,d~ 4- .0 �9 +f~,m_aqm_~-+-d~,mqm 

. . . . . . . . . .  . . o . . o ~ 

"+- qra.-1,m-1 + ~ q~-~ + drn-I,m AT 2 qm 

m--1  , ( ~ m  m = r t ( ~-~ + ~ ) 0 ~ ,  

Cm,oqo + dm,lq~ + �9 �9 . + d . . . .  3q~-3 + dm,.~-v qm-~ 

w h e r e  

ao,o ----- q~l q~l; 

k h ~ n n 
n=/~+l 

~m ((i) ~ , m dm,~ = d ~ , . ~ =  m~ '~-qJk+U; 

n=k+l  

rn 

f~,~ = f~,~ ----- ~ \ ~ T~+~) + ~ ~,u~- ~PI+~)L ,~ 
n = k + I  

k = l , 2  . . . . .  m - - l ;  / = 1 , 2  . . . .  , m - - l ;  

a)?_- 2Vh-~ ( 
~,oA'~ Y~-; q ~ = - -  d)7-[ 2 y - a - ~ [ ~ )  " 

~'o / ' 

2 ] / a A ~  (n - -  p) _~ ' 

- ~  

S t a r t i n g  the r e g u l a r i z a t i o n  p r o c e s s  wi th  r b l a t i o n  (7) m a k e s  i t  p o s s i b l e  to i m p r o v e  the a p p r o x i m a t i o n  
to the o p e r a t o r  A. A s  a c o n s e q u e n c e ,  f o r  o b t a i n i n g  the s a m e  a c c u r a c y  in  r e s t o r i n g  the t h e r m a l  f lux  c u r v e ,  
one m a y  m a k e  the AT i n t e r v a l  w i d e r  than  in  the  a l g o r i t h m  b a s e d  on Eq.  (3) and  thus  r e d u c e  the n e c e s s a r y  
c o m p u t e r  t i m e  o r  i n c r e a s e  the  w i d e s t  p o s s i b l e  [0, ~'m] i n t e r v a l  on which  a b o u n d a r y  cond i t i on  i s  to be r e -  
s t o r e d .  
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Fig. 3. Zeroth-order regularization for a 
"triangular" thermal flux q (~ with a uni- 
form distribution of e r ro rs  in the initial 
temperature values, with Aleo = 0.02 and 
60 = 0.01| (1), 0.1@ma x (2). Solid 
line represents the exact solution, dashed 
line represents the estimated accuracy 
of restoring the thermal flux curve. Para-  
meters  e and 6 both in %. 

o qo qe "~/T,~ 

The last statement is relevant to the "dimensionality problem" concerning the limited memory of 
modern computers and their inability to solve high-dimensional problems. The dimensionality of a problem 
i s  determined by the highest order of the system of algebraic equations (3) or (7), equal to the largest pos- 
sible number of subdivisions of the time interval (mma x -~ 70 for solving Eq. (3) on an M-20 computer). 

In practice one often encounters the problem of determining the thermal flux to a plate with one sur- 
face insulated where the temperature is measured. For this case there has been derived an integral equa- 
tion (with s kernel not containing infinite series) in [7] for determining an auxiliary function g(r) coupled to 
q(r) through a contInuous operator. The f i rs t  part  of this equation represents the derivative of the test 
temperature with respect to time dO/dr, the determination of which is a problem in the noncorrective class. 
For this reason, it is worthwhile to construct the computation algorithm so as to bypass the intermediate 
step of calculating the derivative. 

We use the integral equation in g(r) [8], representing it in the form 

i ~ (~-  ~) d~ = 
dO (~) 

g ( ~ )  & d - - - g - -  ' 
0 

@('~-~)=~* [ 2 # a ~ - ~ )  b ] ~-~1 t"~-2 ~ exp[--~12ld~l 'o  

where 

From here we have 

�9 d*ig(~) 
0 0 

Changing the order of integration yields 

0 

U sing the approximation technique shown in [2], we write 
n 

o . ,  1 , 2  . . . . .  m, 
i ~ l  

whe re 

b= [F(Y'~)--F( ,_,)]; Y~'~- y,, b 
2a 2 V'a (%--'~0 

e (I/) = - ~  iO* (Y) -- 0.5 Y . 
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Thus, de te rmin ing  the aux i l i a ry  function g(T) fa i ls  within the f r a m e w o r k  of the desc r ibed  regu la r iza t ion  
p r o c e d u r e  accord ing  to (3). The re la t ing  equation q(gff),  T) is  

1- -exp [ b2 ] 

a(T--~) .d~. 

q~ 

q(~)-- 2~-~-; g (~) ]fix__ ~ 
0 

After an approximation we obtain the following computation formula: 

q,~ = gSP~', n = I, 2 . . . . .  m, 

i=1 

where 

b 7~=~i-i 

Solving several model problems of determining the thermal fluxes has shown that the procedure is 
eomputationally as efficient as the procedure for a semiinfinite body, except for the somewhat wider "edge 
effect" region subject to the arbitrary choice of condition g'(7 m) = 0. 

The proposed method of determining the boundary conditions is suitable for a large class of problems 
involving the simulation of transient thermal modes in the laboratory and in field testing of diverse appara- 
tus. 

N O T A  T I O N  

A Is  the 
AA7 is  the 
a is  the 
b is  the 
g Is  the 
q is  the 
T is  the 
x 1 is the 
Fo is  the 

i s  the 
5L2 is  the 
e is  the 
A7 is  the 
O is  the 
X is  the 
T is  the 
7 m is  the 
AFo = a A ' r  / x  2. 

in tegra l  ope ra to r ;  
approx imat ing  ope ra to r ;  
t h e r m a l  diffusivity;  
plate  th ickness;  
auxi l ia ry  function; 
t h e r m a l  flux; 
t e m p e r a t u r e ;  
dis tance f r o m  body sur face  to t e m p e r a t u r e  probe;  
F ou r i e r  number ;  
r egu la r i za t ion  p a r a m e t e r ;  
e r r o r  of input data in the m e t r i c s  of the Hi lber t  space of fuact ionals ;  
l a r g e s t  e r r o r  in r e s t o r i n g  the t he rma l  flux curve ,  with r e s p e c t  to qmax;  
t ime in terva l ;  
model  t e m p e r a t u r e ;  
t he rm a l  conductivity;  
t ime;  
r igh t -hand  boundary of t ime in terva l ;  
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